Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 97
Filtrar
1.
Cell Death Dis ; 15(4): 285, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38653969

RESUMO

Despite advances in the treatment and care of severe physical injuries, trauma remains one of the main reasons for disability-adjusted life years worldwide. Trauma patients often suffer from disturbances in energy utilization and metabolic dysfunction, including hyperglycemia and increased insulin resistance. White adipose tissue plays an essential role in the regulation of energy homeostasis and is frequently implicated in traumatic injury due to its ubiquitous body distribution but remains poorly studied. Initial triggers of the trauma response are mainly damage-associated molecular patterns (DAMPs) such as histones. We hypothesized that DAMP-induced adipose tissue inflammation contributes to metabolic dysfunction in trauma patients. Therefore, we investigated whether histone release during traumatic injury affects adipose tissue. Making use of a murine polytrauma model with hemorrhagic shock, we found increased serum levels of histones accompanied by an inflammatory response in white adipose tissue. In vitro, extracellular histones induced an inflammatory response in human adipocytes. On the molecular level, this inflammatory response was mediated via a MYD88-IRAK1-ERK signaling axis as demonstrated by pharmacological and genetic inhibition. Histones also induced lytic cell death executed independently of caspases and RIPK1 activity. Importantly, we detected increased histone levels in the bloodstream of patients after polytrauma. Such patients might benefit from a therapy consisting of activated protein C and the FDA-approved ERK inhibitor trametinib, as this combination effectively prevented histone-mediated effects on both, inflammatory gene activation and cell death in adipocytes. Preventing adipose tissue inflammation and adipocyte death in patients with polytrauma could help minimize posttraumatic metabolic dysfunction.


Assuntos
Adipócitos , Histonas , Inflamação , Fator 88 de Diferenciação Mieloide , Humanos , Animais , Histonas/metabolismo , Adipócitos/metabolismo , Adipócitos/efeitos dos fármacos , Inflamação/patologia , Inflamação/metabolismo , Camundongos , Fator 88 de Diferenciação Mieloide/metabolismo , Morte Celular/efeitos dos fármacos , Masculino , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Ferimentos e Lesões/complicações , Ferimentos e Lesões/metabolismo , Ferimentos e Lesões/patologia , Transdução de Sinais/efeitos dos fármacos
2.
Sci Rep ; 14(1): 7067, 2024 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-38528040

RESUMO

Mutations leading to a reduced or loss of function in genes of the leptin-melanocortin system confer a risk for monogenic forms of obesity. Yet, gain of function variants in the melanocortin-4-receptor (MC4R) gene predispose to a lower BMI. In individuals with reduced body weight, we thus expected mutations leading to an enhanced function in the respective genes, like leptin (LEP) and MC4R. Therefore, we have Sanger sequenced the coding regions of LEP and MC4R in 462 female patients with anorexia nervosa (AN), and 445 healthy-lean controls. In total, we have observed four and eight variants in LEP and MC4R, respectively. Previous studies showed different functional in vitro effects for the detected frameshift and non-synonymous variants: (1) LEP: reduced/loss of function (p.Val94Met), (2) MC4R: gain of function (p.Val103Ile, p.Ile251Leu), reduced or loss of function (p.Thr112Met, p.Ser127Leu, p.Leu211fsX) and without functional in vitro data (p.Val50Leut). In LEP, the variant p.Val94Met was detected in one patient with AN. For MC4R variants, one patient with AN carried the frameshift variant p.Leu211fsX. One patient with AN was heterozygous for two variants at the MC4R (p.Val103Ile and p.Ser127Leu). All other functionally relevant variants were detected in similar frequencies in patients with AN and lean individuals.


Assuntos
Anorexia Nervosa , Leptina , Receptor Tipo 4 de Melanocortina , Feminino , Humanos , Anorexia Nervosa/genética , Leptina/genética , Melanocortinas/genética , Mutação , Obesidade/genética , Receptor Tipo 4 de Melanocortina/genética
3.
Artigo em Inglês | MEDLINE | ID: mdl-38470203

RESUMO

PURPOSE: Bi-allelic pathogenic leptin gene variants cause severe early onset obesity usually associated with low or undetectable circulating leptin levels. Recently, variants have been described resulting in secreted mutant forms of the hormone leptin with either biologically inactive or antagonistic properties. METHODS: We conducted a systematic literature research supplemented by unpublished data from patients at our center as well as new in vitro analyses to provide a systematic classification of congenital leptin deficiency based on the molecular and functional characteristics of the underlying leptin variants and investigated the correlation of disease subtype with severity of the clinical phenotype. RESULTS: A total of 28 distinct homozygous leptin variants were identified in 148 patients. The identified variants can be divided into three different subtypes of congenital leptin deficiency: classical hormone deficiency (21 variants in 128 patients), biologically inactive hormone (3 variants in 12 patients) and antagonistic hormone (3 variants in 7 patients). Only 1 variant (n=1 patient) remained unclassified. Patients with biological inactive leptin have a higher percentage of 95th BMI percentile (%BMIp95) compared to patients with classical hormone deficiency. While patients with both classical hormone deficiency and biological inactive hormone can be treated with the same starting dose of metreleptin, patients with antagonistic hormone need a variant-tailored treatment approach to overcome the antagonistic properties of the variant leptin. MAIN CONCLUSIONS: Categorization of leptin variants based on molecular and functional characteristics helps to determine the most adequate approach to treatment of patients with congenital leptin deficiency.

4.
Br J Cancer ; 130(8): 1365-1376, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38396172

RESUMO

BACKGROUND: Glioblastoma represents a brain tumor with a notoriously poor prognosis. First-line therapy may include adjunctive Tumor Treating Fields (TTFields) which are electric fields that are continuously delivered to the brain through non-invasive arrays. On a different note, CUSP9v3 represents a drug repurposing strategy that includes 9 repurposed drugs plus metronomic temozolomide. Here, we examined whether TTFields enhance the antineoplastic activity of CUSP9v3 against this disease. METHODS: We performed preclinical testing of a multimodal approach of TTFields and CUSP9v3 in different glioblastoma models. RESULTS: TTFields had predominantly synergistic inhibitory effects on the cell viability of glioblastoma cells and non-directed movement was significantly impaired when combined with CUSP9v3. TTFields plus CUSP9v3 significantly enhanced apoptosis, which was associated with a decreased mitochondrial outer membrane potential (MOMP), enhanced cleavage of effector caspase 3 and reduced expression of Bcl-2 and Mcl-1. Moreover, oxidative phosphorylation and expression of respiratory chain complexes I, III and IV was markedly reduced. CONCLUSION: TTFields strongly enhance the CUSP9v3-mediated anti-glioblastoma activity. TTFields are currently widely used for the treatment of glioblastoma patients and CUSP9v3 was shown to have a favorable safety profile in a phase Ib/IIa trial (NCT02770378) which facilitates transition of this multimodal approach to the clinical setting.


Assuntos
Antineoplásicos , Neoplasias Encefálicas , Terapia por Estimulação Elétrica , Glioblastoma , Humanos , Glioblastoma/tratamento farmacológico , Reposicionamento de Medicamentos , Reprogramação Metabólica , Temozolomida/farmacologia , Antineoplásicos/uso terapêutico , Neoplasias Encefálicas/tratamento farmacológico , Terapia Combinada
5.
EMBO Rep ; 24(10): e57600, 2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37671834

RESUMO

Adipocytes are critical regulators of metabolism and energy balance. While white adipocyte dysfunction is a hallmark of obesity-associated disorders, thermogenic adipocytes are linked to cardiometabolic health. As adipocytes dynamically adapt to environmental cues by functionally switching between white and thermogenic phenotypes, a molecular understanding of this plasticity could help improving metabolism. Here, we show that the lncRNA Apoptosis associated transcript in bladder cancer (AATBC) is a human-specific regulator of adipocyte plasticity. Comparing transcriptional profiles of human adipose tissues and cultured adipocytes we discovered that AATBC was enriched in thermogenic conditions. Using primary and immortalized human adipocytes we found that AATBC enhanced the thermogenic phenotype, which was linked to increased respiration and a more fragmented mitochondrial network. Expression of AATBC in adipose tissue of mice led to lower plasma leptin levels. Interestingly, this association was also present in human subjects, as AATBC in adipose tissue was inversely correlated with plasma leptin levels, BMI, and other measures of metabolic health. In conclusion, AATBC is a novel obesity-linked regulator of adipocyte plasticity and mitochondrial function in humans.

6.
Proc Natl Acad Sci U S A ; 120(34): e2301880120, 2023 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-37579160

RESUMO

Skin is the largest human organ with easily noticeable biophysical manifestations of aging. As human tissues age, there is chronological accumulation of biophysical changes due to internal and environmental factors. Skin aging leads to decreased elasticity and the loss of dermal matrix integrity via degradation. The mechanical properties of the dermal matrix are maintained by fibroblasts, which undergo replicative aging and may reach senescence. While the secretory phenotype of senescent fibroblasts is well studied, little is known about changes in the fibroblasts biophysical phenotype. Therefore, we compare biophysical properties of young versus proliferatively aged primary fibroblasts via fluorescence and traction force microscopy, single-cell atomic force spectroscopy, microfluidics, and microrheology of the cytoskeleton. Results show senescent fibroblasts have decreased cytoskeletal tension and myosin II regulatory light chain phosphorylation, in addition to significant loss of traction force. The alteration of cellular forces is harmful to extracellular matrix homeostasis, while decreased cytoskeletal tension can amplify epigenetic changes involved in senescence. Further exploration and detection of these mechanical phenomena provide possibilities for previously unexplored pharmaceutical targets against aging.


Assuntos
Senescência Celular , Pele , Humanos , Idoso , Senescência Celular/genética , Células Cultivadas , Envelhecimento , Fibroblastos/metabolismo
7.
Front Endocrinol (Lausanne) ; 14: 1195677, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37455918

RESUMO

Introduction: Atrial natriuretic peptide (ANP), a hormone secreted from the heart, controls cardiovascular and renal functions including arterial blood pressure and natriuresis. ANP also exerts metabolic effects in adipose tissue, liver and skeletal muscle, and interacts with the secretion of adipokines. We tested the hypothesis that ANP lowers concentrations of the anorexigenic adipokine leptin in healthy humans in vivo. Methods: Human ANP or matching placebo was infused intravenously (iv) into healthy men in a controlled clinical trial. Results: Within 135 minutes of iv ANP infusion, we observed an acute decrease in plasma leptin levels compared to controls. Free fatty acids markedly increased with ANP infusion in vivo, indicating activated lipolysis. In human SGBS adipocytes, ANP suppressed leptin release. Discussion: The study shows that the cardiac hormone ANP reduces the levels of the anorexigenic adipokine leptin in healthy humans, providing further support for ANP as a cardiomyokine in a heart - adipose tissue axis. (registered in the German Clinical Trials Register and the WHO International Clinical Trials Registry Platform was granted under DRKS00024559).


Assuntos
Fator Natriurético Atrial , Leptina , Humanos , Masculino , Adipócitos/metabolismo , Tecido Adiposo/metabolismo , Fator Natriurético Atrial/farmacologia , Fator Natriurético Atrial/metabolismo , Leptina/metabolismo , Lipólise
8.
N Engl J Med ; 388(24): 2253-2261, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37314706

RESUMO

Hormone absence or inactivity is common in congenital disease, but hormone antagonism remains controversial. Here, we characterize two novel homozygous leptin variants that yielded antagonistic proteins in two unrelated children with intense hyperphagia, severe obesity, and high circulating levels of leptin. Both variants bind to the leptin receptor but trigger marginal, if any, signaling. In the presence of nonvariant leptin, the variants act as competitive antagonists. Thus, treatment with recombinant leptin was initiated at high doses, which were gradually lowered. Both patients eventually attained near-normal weight. Antidrug antibodies developed in the patients, although they had no apparent effect on efficacy. No severe adverse events were observed. (Funded by the German Research Foundation and others.).


Assuntos
Leptina , Obesidade Mórbida , Criança , Humanos , Anticorpos , Homozigoto , Leptina/genética , Obesidade Mórbida/genética , Transdução de Sinais
9.
Cell Metab ; 35(5): 734-736, 2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-37137288

RESUMO

Immune functions are influenced by the nutritional state. In a recent publication in Immunity, Janssen et al. unveil that a fasting-induced glucocorticoid release makes monocytes move from blood into the bone marrow. Upon refeeding, these chronologically older monocytes are again released and exert detrimental effects during bacterial infection.


Assuntos
Medula Óssea , Monócitos , Humanos , Células da Medula Óssea , Jejum , Glucocorticoides
10.
Nucleic Acids Res ; 51(3): 1297-1316, 2023 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-36651277

RESUMO

The RNA-binding protein PURA has been implicated in the rare, monogenetic, neurodevelopmental disorder PURA Syndrome. PURA binds both DNA and RNA and has been associated with various cellular functions. Only little is known about its main cellular roles and the molecular pathways affected upon PURA depletion. Here, we show that PURA is predominantly located in the cytoplasm, where it binds to thousands of mRNAs. Many of these transcripts change abundance in response to PURA depletion. The encoded proteins suggest a role for PURA in immune responses, mitochondrial function, autophagy and processing (P)-body activity. Intriguingly, reduced PURA levels decrease the expression of the integral P-body components LSM14A and DDX6 and strongly affect P-body formation in human cells. Furthermore, PURA knockdown results in stabilization of P-body-enriched transcripts, whereas other mRNAs are not affected. Hence, reduced PURA levels, as reported in patients with PURA Syndrome, influence the formation and composition of this phase-separated RNA processing machinery. Our study proposes PURA Syndrome as a new model to study the tight connection between P-body-associated RNA regulation and neurodevelopmental disorders.


Assuntos
Proteínas de Ligação a RNA , Fatores de Transcrição , Humanos , Proteínas de Ligação a DNA/genética , Epilepsia , Corpos de Processamento , RNA Mensageiro/metabolismo , Fatores de Transcrição/metabolismo
12.
PLoS One ; 17(9): e0266642, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36121795

RESUMO

Homozygosity for pathogenic variants in the leptin gene leads to congenital leptin deficiency causing severe early-onset obesity. This monogenic form of obesity has mainly been detected in patients from consanguineous families. Prevalence estimates for the general population using the Exome Aggregation Consortium (ExAC) database reported a low frequency of leptin mutations. One in approximately 15 million individuals will be homozygous for a deleterious leptin variant. With the present study, we aimed to extend these findings utilizing the augmented Genome Aggregation Database (gnomAD) v2.1.1 including more than 140,000 samples. In total, 68 non-synonymous and 7 loss-of-function leptin variants were deposited in gnomAD. By predicting functional implications with the help of in silico tools, like SIFT, PolyPhen2 and MutationTaster2021, the prevalence of hetero- and homozygosity for putatively pathogenic variants (n = 32; pathogenic prediction by at least two tools) in the leptin gene were calculated. Across all populations, the estimated prevalence for heterozygosity for functionally relevant variants was approximately 1:2,100 and 1:17,830,000 for homozygosity. This prevalence deviated between the individual populations. Accordingly, people from East Asia and individuals of mixed ethnicities ('Others') were at greater risk to carry a possibly damaging leptin variant. Generally, this study emphasises the scarcity of pathogenic leptin variants in the general population with varying prevalence for distinct study groups.


Assuntos
Bases de Dados Genéticas , Leptina , Exoma , Humanos , Leptina/genética , Obesidade/genética , Prevalência
13.
Int J Obes (Lond) ; 46(11): 1939-1947, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35986215

RESUMO

20 years ago, we described a human cell strain derived from subcutaneous adipose tissue of an infant supposed to have Simpson-Golabi-Behmel Syndrome (SGBS), thus called "SGBS cells". Since then, these cells have emerged as the most commonly used cell model for human adipogenesis and human adipocyte biology. Although these adipocyte derived stem cells have not been genetically manipulated for transformation or immortalization, SGBS cells retain their capacity to proliferate and to differentiate into adipocytes for more than 50 population doublings, providing an almost unlimited source of human adipocyte progenitor cells. Original data obtained with SGBS cells led to more than 200 peer reviewed publications comprising investigations on adipogenesis and browning, insulin sensitivity, inflammatory response, adipokine production, as well as co-culture models and cell-cell communication. In this article, we provide an update on the characterization of SGBS cells, present basic methods for their application and summarize results of a systematic literature search on original data obtained with this cell strain.


Assuntos
Adipócitos , Gigantismo , Humanos , Lactente , Adipocinas , Biologia
14.
Nat Rev Endocrinol ; 18(10): 623-637, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35902734

RESUMO

Obesity is a multifactorial and complex disease that often manifests in early childhood with a lifelong burden. Polygenic and monogenic obesity are driven by the interaction between genetic predisposition and environmental factors. Polygenic variants are frequent and confer small effect sizes. Rare monogenic obesity syndromes are caused by defined pathogenic variants in single genes with large effect sizes. Most of these genes are involved in the central nervous regulation of body weight; for example, genes of the leptin-melanocortin pathway. Clinically, patients with monogenic obesity present with impaired satiety, hyperphagia and pronounced food-seeking behaviour in early childhood, which leads to severe early-onset obesity. With the advent of novel pharmacological treatment options emerging for monogenic obesity syndromes that target the central melanocortin pathway, genetic testing is recommended for patients with rapid weight gain in infancy and additional clinical suggestive features. Likewise, patients with obesity associated with hypothalamic damage or other forms of syndromic obesity involving energy regulatory circuits could benefit from these novel pharmacological treatment options. Early identification of patients affected by syndromic obesity will lead to appropriate treatment, thereby preventing the development of obesity sequelae, avoiding failure of conservative treatment approaches and alleviating stigmatization of patients and their families.


Assuntos
Leptina , Obesidade , Pré-Escolar , Predisposição Genética para Doença/genética , Humanos , Hiperfagia , Leptina/genética , Melanocortinas/genética , Obesidade/tratamento farmacológico , Obesidade/genética , Fenótipo , Receptores para Leptina/genética
15.
Mol Med ; 28(1): 68, 2022 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-35715726

RESUMO

BACKGROUND: Thyroid hormone responsive protein (THRSP) is a lipogenic nuclear protein that is highly expressed in murine adipose tissue, but its role in humans remains unknown. METHODS: We characterized the insulin regulation of THRSP in vivo in human adipose tissue biopsies and in vitro in Simpson-Golabi-Behmel syndrome (SGBS) adipocytes. To this end, we measured whole-body insulin sensitivity using the euglycemic insulin clamp technique in 36 subjects [age 40 ± 9 years, body mass index (BMI) 27.3 ± 5.0 kg/m2]. Adipose tissue biopsies were obtained at baseline and after 180 and 360 min of euglycemic hyperinsulinemia for measurement of THRSP mRNA concentrations. To identify functions affected by THRSP, we performed a transcriptomic analysis of THRSP-silenced SGBS adipocytes. Mitochondrial function was assessed by measuring mitochondrial respiration as well as oxidation and uptake of radiolabeled oleate and glucose. Lipid composition in THRSP silencing was studied by lipidomic analysis. RESULTS: We found insulin to increase THRSP mRNA expression 5- and 8-fold after 180 and 360 min of in vivo euglycemic hyperinsulinemia. This induction was impaired in insulin-resistant subjects, and THRSP expression was closely correlated with whole-body insulin sensitivity. In vitro, insulin increased both THRSP mRNA and protein concentrations in SGBS adipocytes in a phosphoinositide 3-kinase (PI3K)-dependent manner. A transcriptomic analysis of THRSP-silenced adipocytes showed alterations in mitochondrial functions and pathways of lipid metabolism, which were corroborated by significantly impaired mitochondrial respiration and fatty acid oxidation. A lipidomic analysis revealed decreased hexosylceramide concentrations, supported by the transcript concentrations of enzymes regulating sphingolipid metabolism. CONCLUSIONS: THRSP is regulated by insulin both in vivo in human adipose tissue and in vitro in adipocytes, and its expression is downregulated by insulin resistance. As THRSP silencing decreases mitochondrial respiration and fatty acid oxidation, its downregulation in human adipose tissue could contribute to mitochondrial dysfunction. Furthermore, disturbed sphingolipid metabolism could add to metabolic dysfunction in obese adipose tissue.


Assuntos
Adipócitos , Resistência à Insulina , Insulina , Proteínas Nucleares/metabolismo , Fatores de Transcrição/metabolismo , Adipócitos/metabolismo , Adulto , Animais , Arritmias Cardíacas , Ácidos Graxos/metabolismo , Doenças Genéticas Ligadas ao Cromossomo X , Gigantismo , Cardiopatias Congênitas , Humanos , Insulina/metabolismo , Resistência à Insulina/fisiologia , Deficiência Intelectual , Metabolismo dos Lipídeos , Camundongos , Pessoa de Meia-Idade , Mitocôndrias/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , RNA Mensageiro/metabolismo , Esfingolipídeos/metabolismo
16.
Adipocyte ; 11(1): 315-324, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35531859

RESUMO

Oncostatin M (OSM) is a member of the glycoprotein 130 cytokine family that is involved in chronic inflammation and increased in adipose tissue under obesity and insulin resistance. OSM was shown to inhibit adipogenesis, suppress browning, and contribute to insulin resistance in cultured white adipocytes. In contrast, OSM may have a metabolically favourable role on adipocytes in mouse models of obesity and insulin resistance. However, a putative role of OSM in modulating lipolysis has not been investigated in detail to date. To address this, cultured white adipocytes of mouse or human origin were exposed to 10 or 100 ng/ml of OSM for various time periods. In murine 3T3-L1 cells, OSM stimulation directly activated hormone-sensitive lipase (HSL) and other players of the lipolytic machinery, and dose-dependently increased free fatty acid and glycerol release. In parallel, OSM attenuated insulin-mediated suppression of lipolysis and induced phosphorylation of serine-residues on the insulin receptor substrate-1 (IRS1) protein. Key experiments were verified in a second murine and a human adipocyte cell line. Inhibiton of extracellular signal-regulated kinase (ERK)-1/2 activation, abolished OSM-mediated HSL phosphorylation and lipolysis. In conclusion, OSM signalling directly promotes lipolysis in white adipocytes in an ERK1/2-dependent manner.


Assuntos
Adipócitos Brancos , Oncostatina M , Células 3T3-L1 , Adipócitos Brancos/efeitos dos fármacos , Adipócitos Brancos/metabolismo , Animais , Relação Dose-Resposta a Droga , Ácidos Graxos/metabolismo , Glicerol/metabolismo , Humanos , Proteínas Substratos do Receptor de Insulina/metabolismo , Resistência à Insulina , Lipólise , Camundongos , Obesidade/metabolismo , Oncostatina M/farmacologia
17.
Cell Mol Life Sci ; 79(4): 207, 2022 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-35338424

RESUMO

Despite the manifold recent efforts to improve patient outcomes, trauma still is a clinical and socioeconomical issue of major relevance especially in younger people. The systemic immune reaction after severe injury is characterized by a strong pro- and anti-inflammatory response. Besides its functions as energy storage depot and organ-protective cushion, adipose tissue regulates vital processes via its secretion products. However, there is little awareness of the important role of adipose tissue in regulating the posttraumatic inflammatory response. In this review, we delineate the local and systemic role of adipose tissue in trauma and outline different aspects of adipose tissue as an immunologically active modifier of inflammation and as an immune target of injured remote organs after severe trauma.


Assuntos
Tecido Adiposo , Inflamação , Humanos
18.
EMBO Mol Med ; 14(3): e14901, 2022 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-35170849

RESUMO

Autoinflammatory diseases are a heterogenous group of disorders defined by fever and systemic inflammation suggesting involvement of genes regulating innate immune responses. Patients with homozygous loss-of-function variants in the OTU-deubiquitinase OTULIN suffer from neonatal-onset OTULIN-related autoinflammatory syndrome (ORAS) characterized by fever, panniculitis, diarrhea, and arthritis. Here, we describe an atypical form of ORAS with distinct clinical manifestation of the disease caused by two new compound heterozygous variants (c.258G>A (p.M86I)/c.500G>C (p.W167S)) in the OTULIN gene in a 7-year-old affected by a life-threatening autoinflammatory episode with sterile abscess formation. On the molecular level, we find binding of OTULIN to linear ubiquitin to be compromised by both variants; however, protein stability and catalytic activity is most affected by OTULIN variant p.W167S. These molecular changes together lead to increased levels of linear ubiquitin linkages in patient-derived cells triggering the disease. Our data indicate that the spectrum of ORAS patients is more diverse than previously thought and, thus, supposedly asymptomatic individuals might also be affected. Based on our results, we propose to subdivide the ORAS into classical and atypical entities.


Assuntos
Endopeptidases , Doenças Hereditárias Autoinflamatórias/genética , Ubiquitina , Criança , Endopeptidases/genética , Humanos , Recém-Nascido , Inflamação/genética , Ubiquitina/metabolismo
19.
Mol Metab ; 57: 101424, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34954109

RESUMO

OBJECTIVES: Glucocorticoids (GCs) are one of the most widely prescribed anti-inflammatory drugs. By acting through their cognate receptor, the glucocorticoid receptor (GR), GCs downregulate the expression of pro-inflammatory genes and upregulate the expression of anti-inflammatory genes. Metabolic pathways have recently been identified as key parts of both the inflammatory activation and anti-inflammatory polarization of macrophages, immune cells responsible for acute inflammation and tissue repair. It is currently unknown whether GCs control macrophage metabolism, and if so, to what extent metabolic regulation by GCs confers anti-inflammatory activity. METHODS: Using transcriptomic and metabolomic profiling of macrophages, we identified GC-controlled pathways involved in metabolism, especially in mitochondrial function. RESULTS: Metabolic analyses revealed that GCs repress glycolysis in inflammatory myeloid cells and promote tricarboxylic acid (TCA) cycle flux, promoting succinate metabolism and preventing intracellular accumulation of succinate. Inhibition of ATP synthase attenuated GC-induced transcriptional changes, likely through stalling of TCA cycle anaplerosis. We further identified a glycolytic regulatory transcription factor, HIF1α, as regulated by GCs, and as a key regulator of GC responsiveness during inflammatory challenge. CONCLUSIONS: Our findings link metabolism to gene regulation by GCs in macrophages.


Assuntos
Ciclo do Ácido Cítrico , Glucocorticoides , Glucocorticoides/farmacologia , Humanos , Inflamação/metabolismo , Macrófagos/metabolismo , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/metabolismo
20.
Cells ; 10(11)2021 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-34831427

RESUMO

MicroRNAs (miRNAs), a class of small, non-coding RNA molecules, play an important role in the posttranscriptional regulation of gene expression, thereby influencing important cellular functions. In adipocytes, miRNAs show import regulatory features and are described to influence differentiation as well as metabolic, endocrine, and inflammatory functions. We previously identified miR-27a being upregulated under inflammatory conditions in human adipocytes and aimed to elucidate its function in adipocyte biology. Both strands of miR-27a, miR-27a-3p and -5p, were downregulated during the adipogenic differentiation of Simpson-Golabi-Behmel syndrome (SGBS) cells, human multipotent adipose-derived stem cells (hMADS), and human primary adipose-derived stromal cells (hASCs). Using miRNA-mimic transfection, we observed that miR-27a-3p is a crucial regulator of adipogenesis, while miR-27a-5p did not alter the differentiation capacity in SGBS cells. In silico screening predicted lipoprotein lipase (LPL) and peroxisome proliferator activated receptor γ (PPARγ) as potential targets of miR-27a-3p. The downregulation of both genes was verified in vitro, and the interaction of miR-27-3p with target sites in the 3' UTRs of both genes was confirmed via a miRNA-reporter-gene assay. Here, the knockdown of LPL did not interfere with adipogenic differentiation, while PPARγ knockdown decreased adipogenesis significantly, suggesting that miR-27-3p exerts its inhibitory effect on adipogenesis by repressing PPARγ. Taken together, we identified and validated a crucial role for miR-27a-3p in human adipogenesis played by targeting the essential adipogenic transcription factor PPARγ. Though we confirmed LPL as an additional target of miR-27a-3p, it does not appear to be involved in regulating human adipogenesis. Thereby, our findings call the conclusions drawn from previous studies, which identified LPL as a crucial regulator for murine and human adipogenesis, into question.


Assuntos
Adipogenia/genética , MicroRNAs/metabolismo , Sequência de Bases , Biomarcadores/metabolismo , Feminino , Regulação da Expressão Gênica , Humanos , Lipase Lipoproteica/genética , Lipase Lipoproteica/metabolismo , MicroRNAs/genética , Pessoa de Meia-Idade , PPAR gama/metabolismo , Triglicerídeos/biossíntese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA